DSN Progress Report 42-48

September and October 1978

MBASIC™ Batch Processor Architectural Overview

S. M. Reynolds
DSN Data Systems Section

The MBASICTM Batch Processor will allow users to run MBASICTM programs more
cheaply. It will be provided as a CONVERT TO BATCH command, usable from the ready
mode. It will translate the users program in stages through several levels of intermediate
language and optimization. Only the final stage is machine dependent; therefore, only a
small effort will be needed to provide a Batch Processor for a new machine.

l. Introduction

Many large, frequently used programs, which are slow and
expensive to run, currently exist in the MBASICTM user
community. The MBASICTM Batch Processor will reduce the
time and cost associated with running these programs by
providing a compiling facility within the MBASICT™M environ-
ment which will allow a user to convert programs to a directly
executable form. Direct execution typically reduces program
run times by at least an order of magnitude below those of the
same programs executed interpretively.

Within the MBASICTM environment, the user may invoke
the Batch Processor through the following commands, pre-
scribed in Fundamentals ofMBASICTM , Vol. I (JPL, Feb. 19,
1974):

CONVERT (filename) TO BATCH (filename?
CONVERT TO BATCH (filename)

QUEUE BATCH (filename)

RUN (filename)

82

il. MBASIC™ Batch Processor Internal View

When called, the MBASICTM Batch Compiler receives the
pseudo-op code (POPCODE) buffer, the Line Reference Table
(LRT), and the Name Reference Table (NRT) from the parser.
The source code of the program to be compiled is never exam-
ined. The output of the compiler is directly executable code
for the host machine.

Within the compiler, a completely machine-independent
stage is followed by a machine-dependent stage. A major goal
of the compiler design is to minimize the proportion of the
machine-dependent stage.

The machine-independent stage uses the POPCODE, LRT,
and NRT to generate a low-level, machine-independent assem-
bly language called MCODE, which is then translated by the
machine-dependent stage into host code (see Fig. 1).

The first step in the translation of POPCODE to MCODE is
translation of POPCODE to an equivalent three-address code.
This intermediate notation is easier to handle in the ensuing
optimization step than the reverse polish notation of POP-
CODE because references to operands are explicit and are

directly associated with the operation code rather than
implicit in pushes onto the stack by previous op codes as in
POPCODE.

The second step in translation to MCODE is the optimiza-
tion of the intermediate code. Because the input and output of
this step are intermediate code, expressed in the same internal
representation, this step will be delayed in the initial imple-
mentation and added later when the surrounding steps have
been verified.

The third machine-independent step is translation of the
intermediate code to MCODE.

Translation of MCODE to machine-dependent assembly
language is performed in two steps: direct translation of
MCODE to host code followed by machine-dependent optimi-
zation.

For example, the source statement
A=B+C
becomes

PUSH B
PUSH C
ADD
POP A

in POPCODE. This is translated into
ADD A B,C

in the intermediate code, which is translated into

FLOAT TEMP1,B
ADD A,TEMP1,C

in MCODE (assuming that B is declared to be an integer), and
into

LMJ X10,FLOAT
B

TEMPI

L AO,TEMP1

A AO,C

S AO,A

Before translation begins, a declaration processing pass
through the POPCODE builds a Symbol Definition Table
(SDT), which contains type and binding information for each
variable explicitly or implicitly declared in the program. The
translation process is performed one statement at a time in

order to minimize the size of buffers and the use of external
mass storage.

lll. Pseudo-Op Code

MBASICT™ pseudo-op code is a reverse polish notation for
the MBASIC™M virtual stack machine (VSM). One POPCODE
string is produced for each MBASICTM source statement. The
MBASICTM VSM checks for incompatible types at execution
time and performs legal type conversions; it can handle arrays
and strings as atomic data items; and it handles FOR-NEXT
and GOSUB transfers implicitly by using auxiliary stacks. The
reflection of these features in POPCODE makes it a relatively
high-level language, requiring considerable translation to reach
the-level of a typical real machine. Even syntactically correct
MBASIC™ programs may translate to POPCODE programs
which generate runtime errors in the VSM. These errors will be
detected and an error message printed during translation rather
than at runtime of the compiled program, whenever possible.

IV. Intermediate Language

The Intermediate Language (IL) is a direct mapping of
POPCODE to an equivalent non-stack-dependent language. All
implicit references to stack data are replaced by explicit
references to identifiers, either source defined or temporary
identifiers defined by the IL processor.

With one exception, the translation from POPCODE to IL
involves a one-to-one mapping of POPCODE statements to
corresponding IL statements. The exception is that POPCODE
operations whose only result is to push a variable’s value onto
the data stack do not appear in the IL string, but the
identifiers are referenced as IL arguments.

V. POPCODE to IL Translation

The POPCODE to IL translation algorithm is a pseudo-
execution of the POPCODE string using an identifier stack
instead of a data stack. The popcode string is scanned, and
each POPCODE encountered generates the corresponding IL.
If values would have been popped from the data stack during
execution, identifiers are popped from the identifier stack in
the same order. If values would have been pushed onto the
stack during execution, temporaries are created and their
identifiers pushed onto the identifier stack.

VI. MCODE

MCODE is a low-level, three-address code for a class of
virtual machines with variable storage attributes, such as:

(1) Differing number and type of registers.

83

(2) Differing mappings from main storage to registers (e.g.,
byte addressable machines which map several cells into
one register and word addressable machines which map
one cell into one register).

(3) Differing main storage size.

The MCODE generator for a specific implementation of the
Batch Processor will be configured by setting its variable
attributes to match the host system as closely as possible.

The MCODE virtual machine recognizes the following data
types:

(1) Integer — at least 32 bits precision
(2) Real — host system floating point format
(3) Pointer — at least 16 bits precision

(4) Char — at least 7 bits precision

MCODE machines have a separate address space for each
data type and for instruction code, and the unit quantity for
pointer type and for any absolute address represents one cell
of address space of the type pointed to.

Registers may be defined to accept one or more different
data types, e.g., a general purpose register in many machines
would be represented in the MCODE machine by a register
accepting real, integer, and pointer data.

MCODE contains binary, unary, and nonary operations of
the following kinds:

(1) Arithmetic
(a) Add
(b) Subtract
(c) Multiply
(d) Divide
(e) Unary minus
{2) Boolean
(a) And
(b) Or
(c) Exclusive or
(d) Complement-
(e) Conditional jump

(f) Unconditional jump

84

Each instruction is defined separately for each type, and all
operands must be of matching type. Mixed type operations are
possible through use of the following conversion operations:

(1) Integer to real
(2) Real to integer
(3) Integer to char
(4) Char to integer
(5) Pointer to integer

(6) Integer to pointer

Each instruction consists of an operation code and zero to
three operands. Each operand contains a register/address flag,
a register number or address, a type, and a boolean indirect
addressing indicator, which may be true only if the operand
specifies a pointer register. For arithmetic and boolean
operations, the first operand specifies a destination for the
result of the operation, and the two other operands specify the
source locations. For unary operations, only one source
operand is necessary. Jump instructions have one operand,
which may only be a pointer register in the case of an indirect
address reference or an address in the case of a direct address
reference.

MCODE also contains the following operations on data
files:

(1) Open

(2) Close

(3) Remove

(4) Rename

(5) Append

These operations have only one operand, which contains a
file name.

The following operations have a file name operand followed
by a source or destination operand:

(1) Get char
(2) Put char

VIl. IL to MCODE Translation

IL to MCODE translation is an in-line expansion performed
in a single scan of the IL sequence. Each IL is expanded into
one or more MCODE statements. Code for type checking and
type conversions for legal mixed type operations is generated
during this process. Error messages for illegal types are

generated during type checking. The IL arguments generated
are selected on the basis of the best known source for a value
at compiled code execution time, i.e., a value known to be in
both register and main storage will be represented by the
register.

VIIl. MCODE to Host Assembly Language
Translation

In most cases, the host code will be its standard assembly
language. MCODE to host code translation is a machine-
dependent process; however, in most cases it can be performed
in one scan of the MCODE string with one or more host code
statements generated for each MCODE statement. This is
possible because MCODE is generated for a virtual machine
having storage characteristics similar to those of the real
machine.

IX. Machine-Independent Optimization

The machine-independent optimization step is transparent
(except in efficiency) to the rest of the MIDB processor
because its input and output have the same representation.
Optimization will concentrate on expressions and assignment
statements. Many statistical studies of actual source code and
the possible optimizations have been made, and all show these
to be the most effective optimizations in terms of actual
reduction of the size and execution time of typical object
code. The selected optimizations are:

(1) Subexpressions appearing more than once are calcu-
lated once and saved in a temporary variable; instances
of the common subexpression are replaced by a
reference to the temporary variable.

(2) Subexpressions involving only constants are calculated
at compile time.

(3) Multiple assignments to the same variable are recog-
nized and replaced by the last assignment only.

X. Machine-Dependent Optimization

Machine-dependent optimization is also a transparent pro-
cess (except for efficiency). Some possibilities common to
most machines, but still machine-dependent, are the following:

(1) Chains of branches are replaced by a single branch
instruction.

(2) Unreachable code is deleted.

(3) Common code groups preceding a collecting node are
recognized, and the node is moved to precede the first
instance of the common group. The other instance is
deleted.

(4) Common code groups heading all branches of a
program fork are condensed as in (3), above.

Other completely machine-dependent optimizations might
involve such things as invoking auto increment mode in place
of explicit pointer arithmetic or recognizing LOAD-STORE
groups and replacing them with direct memory to memory
moves.

XI. Summary

The MBASICT™ Batch Processor is a language translator
designed to operate in the MBASICTM environment. It will
provide a facility with which MBASICT™ programs which
have been debugged in the interpretive mode may be trans-
lated into a directly executable form and stored or executed
from the MBASICTM environment.

The Processor is to be designed and implemented in both
machine-independent and machine-dependent sections. The
architecture is planned so that optimization processes are
transparent to the rest of the system (except for efficiency)
and need not be included in the first design-implementation
cycle.

85

Jadwod yoteg =ISVEN I "Bid

QILNIWITIWIZY 38 ¥3ZIWILJO TVNIZ ANV JOLVISNYIL AINO S3¥NOIY NOI 1vINIWIdwWIZY
QITIVISNI SI YOLVISNWEL 3GODOW 3DONO F18VIIOd WY IGOOW NI 43d0D SITINAOW
T0YINOD IONVHD NSG ¥3ANN SNH1 SI IDOVNONYT

YUAWOD 40 1¥vd Q34INDIY V SI YOLVISNVYL

JOLVISNWAL J1dWIS HIIM IDVNONYT T3AIT-MO1

IOVNONYT INIANIdIANI-INIHOVW

$SD11SHI3LDOVEVHD 3IAODW

TVYNONJO NOILYZIWILLO *

3002
IOVNONWT 300D
ATEW3ISSY/INIHOYW 3OVNONYT (INIGNIIANI-INIHOYW)

1399Vl ATGWISSY WVIOOUd HIVIO 318V NOILINISIA TOBWAS

$ 139¥v1 300w WY¥90Yd 31HIGOW "HIVEO WYIOOUd
NOILVZIWIL4O NOILVZIWILIO ONISSIDOU
iNanaasa (G ORI KT rolveNay K maoNzoN K] NOLWEVIDIA ANy
-INIHOYW -3INIHDOYW NOILOMYLSNOD HAV¥O

* *
SWHLNODTY r_\ SWHLROOTV
IN3AN3dIA-INIHOWW N INIANIdIANI-INIHOYW
*D13 ‘F18VL IDONIHT INN

‘5dO-0ANISd ¥ILIYJIIINI

86

